Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Nov;115(5):1186-96.
doi: 10.1016/s0016-5085(98)70090-3.

Guinea pig gastric mucosal cells produce abundant superoxide anion through an NADPH oxidase-like system

Affiliations

Guinea pig gastric mucosal cells produce abundant superoxide anion through an NADPH oxidase-like system

S Teshima et al. Gastroenterology. 1998 Nov.

Abstract

Background & aims: Superoxide anion (O2-) plays an important role in gastric pathophysiology. The aims of this study were to identify O2--producing activity in gastric mucosal cells and to elucidate its possible roles in inflammatory responses of the cells.

Methods: The amount of O2- was measured by the reduction of cytochrome c, and O2--producing cells were visualized by nitroblue tetrazolium reaction. Cytosolic components of the phagocyte reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were detected by immunoblotting and immunocytochemical analyses with antibodies against p47-phox and p67-phox.

Results: Gastric pit cells, but not parietal cells, spontaneously released O2- at 50 nmol . mg protein-1 . h-1. NADPH or guanosine 5'-O-(3-thiotriphosphate) increased the release more than threefold, whereas diphenylene iodonium inhibited it. A reconstituted cell-free system showed that both membrane fraction and neutrophil-related cytosolic components were required for the activity. p47-phox and p67-phox were expressed in the cells. Live Helicobacter pylori organisms and their culture supernatants significantly increased the O2- release. Furthermore, H. pylori lipopolysaccharide could enhance the release more effectively than Escherichia coli lipopolysaccharide. The O2--dependent activation of nuclear factor kappaB occurred in these primed cells.

Conclusions: Gastric pit cells may actively regulate inflammatory responses of gastric mucosa through a phagocyte NADPH oxidase-like activity.

PubMed Disclaimer

Publication types

LinkOut - more resources