Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Nov;294(2):289-95.
doi: 10.1007/s004410051179.

The spatial and temporal expression of HNK-1 by myogenic and skeletogenic cells in the embryonic rat

Affiliations

The spatial and temporal expression of HNK-1 by myogenic and skeletogenic cells in the embryonic rat

P G Bannerman et al. Cell Tissue Res. 1998 Nov.

Abstract

The existence of phenotypic differences within a population of cells provides evidence for discrete stages in cellular differentiation and/or identifies subsets of cells with unique functional properties. The monoclonal antibody HNK-1 has been widely shown to identify subpopulations of cells in the developing nervous system. In this paper we focus on the developmental expression of HNK-1 immunoreactivity by derivatives of somitic (paraxial) mesoderm. We show that between embryonic day 12 and 14 (E12-E14) the HNK-1 epitope is transiently expressed by postmitotic myotomal cells. In E14-E17 developing vertebral columns (which are derived from somitic sclerotomal cells), HNK-1 immunolabeling was expressed by subpopulations of skeletogenic cells, including perinotochordal cells associated with the forming annulus fibrosus and cells within or adjacent to the perichondrium. Chondrocytes within forming centra and vertebral arches did not exhibit HNK-1 immunoreactivity. These results, taken together, show that the expression of the HNK-1 epitope can be used to identify subsets of myogenic and skeletogenic cells both spatially and temporally in the developing rat.

PubMed Disclaimer

Publication types

LinkOut - more resources