Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Nov;135(1):133-43.
doi: 10.1006/jmre.1998.1563.

Signal dynamics in magnetic resonance imaging of the lung with hyperpolarized noble gases

Affiliations
Comparative Study

Signal dynamics in magnetic resonance imaging of the lung with hyperpolarized noble gases

H E Möller et al. J Magn Reson. 1998 Nov.

Abstract

The nonequilibrium bulk magnetic moment of hyperpolarized (HP) noble gases generated by optical pumping has unique characteristics. Based on the Bloch equations, a model was developed describing the signal dynamics of HP gases used in magnetic resonance imaging (MRI) of the lung with special consideration to the breathing cycle. Experimental verification included extensive investigations with HP 3He and 129Xe during both inspiration and held breath in live guinea pigs. Radial acquisition was used to investigate the view variations with a temporal resolution of 5 ms. Agreement between theoretical predictions and in vivo results was excellent. Additionally, information about effects from noble gas diffusion and spin-lattice relaxation was obtained. In vivo results for T1 were 28.8 +/- 1.8 s for 3He and 31.3 +/- 1.8 s for 129Xe. Comparison with in vitro data indicated that relaxation in the pulmonary gas space is dominated by dipolar coupling with molecular oxygen. The results provide a quantitative basis for optimizing pulse sequence design in HP gas MRI of the lung.

PubMed Disclaimer

Publication types

LinkOut - more resources