Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Sep;50(3):291-8.
doi: 10.1007/s002530051293.

Morphogenetic and biochemical effects of dissolved carbon dioxide on filamentous fungi in submerged cultivation

Affiliations
Review

Morphogenetic and biochemical effects of dissolved carbon dioxide on filamentous fungi in submerged cultivation

M McIntyre et al. Appl Microbiol Biotechnol. 1998 Sep.

Abstract

The inhibitory effects of elevated CO2 in submerged fermentation processes involving bacteria and yeasts have been extensively examined. However, until recently, there have been few similar studies involving filamentous fungi, despite the economic importance of this group of organisms. Many of the investigations that have been carried out have involved inappropriate simulation methods and, as a result, may have overestimated the morphogenetic and biochemical effects of elevated CO2 on filamentous fungi. Recent studies, involving continuous culture of Aspergillus niger and the use of computerised image analysis systems, have allowed a more detailed and accurate description of elevated CO2 inhibition and quantification of the subtler morphogenetic effects. A critical evaluation of the various experimental methods that have been used to simulate, at laboratory scale, what is assumed to occur in large-scale bioreactors is necessary. The review of simulation methods employed has much broader relevance to many other microbial and cell culture systems, emphasising the need to think about the appropriateness and relevance of experimental design.

PubMed Disclaimer

MeSH terms