Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 1998 Oct;19(9):1695-703.

Single-voxel proton MR spectroscopy of nonneoplastic brain lesions suggestive of a neoplasm

Affiliations
Case Reports

Single-voxel proton MR spectroscopy of nonneoplastic brain lesions suggestive of a neoplasm

H G Krouwer et al. AJNR Am J Neuroradiol. 1998 Oct.

Abstract

Background and purpose: MR spectroscopy is used to characterize biochemical components of normal and abnormal brain tissue. We sought to evaluate common histologic findings in a diverse group of nonneoplastic diseases in patients with in vivo MR spectroscopic profiles suggestive of a CNS neoplasm.

Methods: During a 2-year period, 241 patients with suspected neoplastic CNS lesions detected on MR images were studied with MR spectroscopy. Of these, five patients with a nonneoplastic diagnosis were identified retrospectively; a sixth patient without tissue diagnosis was added. MR spectroscopic findings consistent with a neoplasm included elevated choline and decreased N-acetylaspartate and creatine, with or without detectable mobile lipid and lactate peaks.

Results: The histologic specimens in all five patients for whom tissue diagnoses were available showed significant WBC infiltrates, with both interstitial and perivascular accumulations of lymphocytes, macrophages, histiocytes, and (in one case) plasma cells. Reactive astrogliosis was also prominent in most tissue samples. This cellular immune response was an integral component of the underlying disorder in these patients, including fulminant demyelination in two patients, human herpesvirus 6 encephalitis in one patient, organizing hematoma from a small arteriovenous malformation in one patient, and inflammatory pseudotumor in one patient. Although no histologic data were available in the sixth patient, neoplasm was considered unlikely on the basis of ongoing clinical and neuroradiologic improvement without specific therapy.

Conclusion: Nonneoplastic disease processes in the CNS may elicit a reactive proliferation of cellular elements of the immune system and of glial tissue that is associated with MR spectroscopic profiles indistinguishable from CNS neoplasms with current in vivo MR spectroscopic techniques. Such false-positive findings substantiate the need for histologic examination of tissue as the standard of reference for the diagnosis of intracranial mass lesions.

PubMed Disclaimer

Publication types