Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Nov;39(12):2365-73.

Proton-driven dipeptide uptake in primary cultured rabbit conjunctival epithelial cells

Affiliations
  • PMID: 9804145

Proton-driven dipeptide uptake in primary cultured rabbit conjunctival epithelial cells

S K Basu et al. Invest Ophthalmol Vis Sci. 1998 Nov.

Abstract

Purpose: To characterize proton-driven carrier-mediated dipeptide uptake in primary cultured conjunctival epithelial cells of the pigmented rabbit using beta-alanyl-L-histidine (L-carnosine) as a model dipeptide substrate.

Methods: Uptake of tritiated L-carnosine was monitored using conjunctival epithelial cells on days 6 through 8 in culture on a filter support. The structural features of dileucine stereoisomers and cephalexin contributing to interaction with the dipeptide transporter were evaluated by computer modeling and inhibition of tritiated L-carnosine uptake.

Results: Uptake of L-carnosine by primary cultured conjunctival epithelial cells in the presence of an inwardly directed proton gradient showed directional asymmetry (favoring apical uptake by a factor of five), temperature dependence, and saturability correlated with substrate concentration, with a Michaelis-Menten constant (Km) of 0.3 +/- 0.03 mM and a maximum uptake rate (Vmax) of 22.0 +/- 1.0 picomoles per milligram protein per minute. L-Carnosine uptake was optimal at pH 6.0 and was reduced by 60% and 35%, respectively, by 50 microM p-trifluoromethoxyphenylhydrazone (a proton ionophore) and by acid preloading with 50 mM NH4Cl. The constituent amino acids did not inhibit L-carnosine uptake. L-Carnosine uptake was inhibited, however, from 50% to 80% by other dipeptides and structurally similar drugs such as bestatin, beta-lactam antibiotics, and angiotensin-converting enzyme inhibitors. The LL, LD, or DL forms of the dipeptide Leu-Leu inhibited tritiated L-carnosine uptake by approximately 60%, 40%, and 70%, respectively. By contrast, the DD form did not inhibit uptake. Results from computer modeling suggest that an appropriate dipeptide N-terminal to C-terminal distance and a favorable orientation of the side chains may be important for substrate interaction with the conjunctival dipeptide transporter.

Conclusions: Uptake of the dipeptide L-carnosine in primary cultured pigmented rabbit conjunctival epithelial cells is probably mediated by a proton-driven dipeptide transporter. This transporter may be used for optimizing the uptake of structurally similar peptidomimetic drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources