Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;30(9):543-8.
doi: 10.1055/s-2007-978929.

YM268 increases the glucose uptake, cell differentiation, and mRNA expression of glucose transporter in 3T3-L1 adipocytes

Affiliations

YM268 increases the glucose uptake, cell differentiation, and mRNA expression of glucose transporter in 3T3-L1 adipocytes

A Shimaya et al. Horm Metab Res. 1998 Sep.

Abstract

The purpose of this study was to examine the effects of bis[4-[2,4-dioxo-5-thiazolidinyl)methyl]phenyl]methane (YM-268), a thiazolidinedione derivative, on glucose uptake, adipocyte differentiation through peroxisome proliferator-activated receptor gamma(PPARgamma), and phosphatidylinositol 3-kinase (PI 3-kinase) activity in cultured cells. YM268 and pioglitazone dose-dependently increased the 2-deoxyglucose uptake in 3T3-L1 cells. YM268 facilitated the insulin-stimulated triglyceride accumulation in 3T3-L1 adipocytes and increased the mRNA expression of fatty acid-binding protein. YM268, with and without insulin, increased the mRNA expression of glucose transporter isoforms such as GLUT1 and GLUT4, indicating enhancement of adipocyte differentiation. Additionally, YM268 and pioglitazone showed activity of the PPARgamma ligand, a member of the nuclear receptor superfamily responsible for adipogenesis. To examine the possible involvement of the increased activity of PI 3-kinase in YM268-stimulated glucose uptake, the enzyme activity was estimated by measuring the phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3) concentration in human monocytic cells. Insulin dose-dependently increased the PI-3,4,5-P3 production but YM268 had no significant effect on the insulin-dependent and -independent PI 3-kinase activation. These results indicate that the mechanism by which YM268 increased glucose uptake, may be accounted for in part by the enhancement of GLUT1 and GLUT4 expression through PPARgamma activation.

PubMed Disclaimer

MeSH terms

Substances