Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Nov;18(11):1163-72.
doi: 10.1097/00004647-199811000-00001.

Matrix metalloproteinases in cerebrovascular disease

Affiliations
Review

Matrix metalloproteinases in cerebrovascular disease

S Mun-Bryce et al. J Cereb Blood Flow Metab. 1998 Nov.

Abstract

Cerebral ischemia and intracerebral hemorrhage cause extensive damage to neurons, disrupt the extracellular matrix, and increase capillary permeability. Multiple substrates participate in the cellular damage, including free radicals and proteases. Matrix metalloproteinases and serine proteases are two classes of proteases that are normally present in brain in latent forms, but once activated, contribute to the injury process. These enzymes have a unique role in the remodeling of the extracellular matrix and in the modulation of the capillary permeability. Intracerebral injection of the matrix metalloproteinase, type IV collagenase, attacks the basal lamina around the capillary and opens the blood-brain barrier. Extracellular matrix-degrading proteases are induced by immediate early genes and cytokines, and regulated by growth factors. Activity of the matrix metalloproteinases is tightly controlled by activation mechanisms and tissue inhibitors of metalloproteinases. During ischemia and hemorrhage, multiple matrix metalloproteinases and serine proteases are produced along with their inhibitors. These proteolytic enzymes are involved in the delayed injury that accompanies the neuroinflammatory response. Synthetic inhibitors to metalloproteinases reduce proteolytic tissue damage, and may limit secondary neuroinflammation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources