Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec:111 ( Pt 23):3551-61.
doi: 10.1242/jcs.111.23.3551.

Three distinct sub-nuclear populations of HMG-I protein of different properties revealed by co-localization image analysis

Affiliations

Three distinct sub-nuclear populations of HMG-I protein of different properties revealed by co-localization image analysis

C Amirand et al. J Cell Sci. 1998 Dec.

Abstract

We have studied the nuclear distribution of the non-histone HMG-I protein by indirect immunofluorescence in several human and murine somatic cell lines and in growing mouse oocytes. We show that HMG-I, a high mobility-group protein which interacts in vitro with the minor groove of AT-rich B-DNA, is found exclusively in the nucleus and that this localization corresponds to a complex distribution. By comparing the HMG-I-dependent fluorescence signal with the chromatin density determined by Hoechst 33342 or propidium iodide staining, we present evidence for the existence of three HMG-I sub-populations whose contribution to the total fluorescence can be determined using a newly developed quantitative co-localization image analysis program: foci that correspond to regions of heterochromatin, intense dots located within decondensed chromatin, and a more diffuse component extending throughout the nucleoplasm. In addition, we show that these sub-populations differ in their sensitivity to nuclease digestion and in vivo displacement by the minor-groove binder Hoechst 33342. Finally, double immunolabeling of RNA polymerase II-dependent transcription and HMG-I shows that the intense dots are not correlated with sites of high transcriptional activity. We discuss the possibility that these three sub-populations reflect distinct and separable biological functions of the HMG-I protein.

PubMed Disclaimer

LinkOut - more resources