Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Nov 27;284(2):421-33.
doi: 10.1006/jmbi.1998.2155.

Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species

Affiliations
Comparative Study

Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species

J P Dos Santos et al. J Mol Biol. .

Abstract

Trimethylamine N-oxide (TMAO) is an abundant compound of tissues of marine fish and invertebrates. During fish spoilage, certain marine bacteria can reduce TMAO to nauseous trimethylamine (TMA). One such bacterium has been isolated and identified as a new Shewanella species, and called Shewanella massilia. The anaerobic growth of S. massilia is greatly increased when TMAO is added, indicating that TMAO reduction involves a respiratory pathway. The TorA enzyme responsible for TMAO reduction is a molybdenum cofactor-containing protein of 90 kDa located in the periplasm. Whereas TorA is induced by both TMAO and dimethylsulfoxide (DMSO), this enzyme has a high substrate specificity and appears to only efficiently reduce TMAO as a natural compound. The structural torA gene encoding the TMAO reductase (TorA) and its flanking regions were amplified using PCR techniques. The torA gene is the third gene of a TMAO-inducible operon (torECAD) encoding the TMAO respiratory components. The torC gene, located upstream from torA encodes a pentahemic c-type cytochrome, likely to be involved in electron transfer to the TorA terminal reductase. TorC was shown to be anchored to the membrane and, like TorA, is induced by TMAO. Except for the TorE protein, which is encoded by the first gene of the torECAD operon, all the tor gene products are homologous to proteins found in the TMAO/DMSO reductase systems from Escherichia coli and Rhodobacter species. In addition, the genetic organization of these systems is similar. Although these bacteria are found in different ecological niches, their respiratory systems appear to be phylogenetically related, suggesting that they come from a common ancestor.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources