Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan;2(1):215-21.

Interleukin 6 acts as a paracrine growth factor in human mammary carcinoma cell lines

Affiliations
  • PMID: 9816109

Interleukin 6 acts as a paracrine growth factor in human mammary carcinoma cell lines

J J Chiu et al. Clin Cancer Res. 1996 Jan.

Abstract

The effect of interleukin 6 (IL-6) on normal and human mammary carcinoma epithelial cells was studied. IL-6 inhibited the growth of estrogen receptor-positive [ER(+)] breast cancer cell lines, which underwent apoptosis with prolonged treatment. In contrast, ER(-) breast cancer cell lines were resistant to IL-6-mediated growth inhibition. By examining the components of the IL-6 receptor (IL-6R) system, we found that ER(+) breast cancer cells expressed predominantly soluble IL-6Ralpha, whereas the ER(-) breast cancer cells expressed primarily the transmembrane form of the IL-6R, gp130. In addition, detectable levels of IL-6 were secreted into the medium by ER(-) but not ER(+) breast cancer cells. Furthermore, the supernatant obtained from IL-6-secreting, ER(-) cells suppressed the growth of IL-6-sensitive, ER(+) breast cancer cells in a paracrine fashion. Although IL-6 is secreted by ER(-) breast cancer cells, this cytokine does not seem to stimulate the proliferation of these cells in an autocrine fashion. These studies indicate that IL-6 can regulate the growth of normal and transformed human mammary epithelial cells differentially, and that IL-6 secretion by some ER(-) breast cancer cells can function as a paracrine growth factor, suppressing the growth of ER(+) breast cancer cells in vitro.

PubMed Disclaimer

MeSH terms

LinkOut - more resources