Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998;18(3):327-36.
doi: 10.1055/s-2008-1040884.

Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis

Affiliations
Review

Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis

P M Matthews et al. Semin Neurol. 1998.

Abstract

Recent magnetic resonance imaging (MRI) and magnetic resonance spectroscopic (MRS) techniques have focused the attention of the multiple sclerosis (MS) research community on reanalysis of classic pathological approaches that have suggested significant axonal injury in this demyelinating disease. There now is abundant evidence from animal work that substantial "innocent bystander" damage to axons can occur with central nervous system (CNS) inflammation. Given the close interactions between axons and glia, it is no surprise that glial damage leads to secondary axonal changes. MRI, MRS, and MRS imaging studies have emphasized that axonal loss or damage in MS can be both substantial and early. The dynamic observations that are allowed by these noninvasive measures of pathology have demonstrated direct correlations between these axonal changes and disability, making a compelling case for increased emphasis on finding treatments of MS that may limit damage to CNS axons or salvage injured axons.

PubMed Disclaimer

Publication types

LinkOut - more resources