Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct;5(10):587-95.
doi: 10.1016/s1074-5521(98)90116-8.

The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone

Affiliations
Free article

The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone

J B Murray et al. Chem Biol. 1998 Oct.
Free article

Abstract

Background: The catalytic activity of RNA enzymes is thought to require divalent metal ions, which are believed to facilitate RNA folding and to play a direct chemical role in the reaction.

Results: We have found that the hammerhead, hairpin and VS ribozymes do not require divalent metal ions, their mimics such as [Co(NH3)6]3+, or even monovalent metal ions for efficient self-cleavage. The HDV ribozyme, however, does appear to require divalent metal ions for self-cleavage. For the hammerhead, hairpin and VS ribozymes, very high concentrations of monovalent cations support RNA-cleavage rates similar to or exceeding those observed in standard concentrations of Mg2+. Analysis of all reaction components by inductively coupled plasma-optical emission spectrophotometry (ICPOES) and the use of a variety of chelating agents effectively eliminate the possibility of contaminating divalent and trivalent metal ions in the reactions. For the hairpin ribozyme, fluorescence resonance energy transfer experiments demonstrate that high concentrations of monovalent cations support folding into the catalytically proficient tertiary structure.

Conclusions: These results directly demonstrate that metal ions are not obligatory chemical participants in the reactions catalysed by the hammerhead, hairpin, and VS ribozymes. They permit us to suggest that the folded structure of the RNA itself contributes more to the catalytic function than was previously recognised, and that the presence of a relatively dense positive charge, rather than divalent metal ions, is the general fundamental requirement. Whether this charge is required for catalysis per se or simply for RNA folding remains to be determined.

PubMed Disclaimer

Similar articles

Cited by

Publication types