Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Dec 1;26(23):5300-9.
doi: 10.1093/nar/26.23.5300.

The hyperthermophilic bacterium Thermotoga maritima has two different classes of family C DNA polymerases: evolutionary implications

Affiliations
Comparative Study

The hyperthermophilic bacterium Thermotoga maritima has two different classes of family C DNA polymerases: evolutionary implications

Y P Huang et al. Nucleic Acids Res. .

Abstract

Bacterial DNA polymerase III (family C DNA polymerase), the principal chromosomal replicative enzyme, is known to occur in at least three distinct forms which have provisionally been classified as class I ( Escherichia coli DNA pol C-type), class II ( Bacillus subtilis DNA pol C-type) and class III (cyanobacteria DNA pol C-type). We have identified two family C DNA polymerase sequences in the hyperthermophilic bacterium Thermotoga maritima. One DNA polymerase consisting of 842 amino acid residues and having a molecular weight of 97 213 belongs to class I. The other one, consisting of 1367 amino acid residues and having a molecular weight of 155 361, is a member of class II. Comparative sequence analyses suggest that the class II DNA polymerase is the principal DNA replicative enzyme of the microbe and that the class I DNA polymerase may be functionally inactive. A phylogenetic analysis using the class II enzyme indicates that T.maritima is closely related to the low G+C Gram-positive bacteria, in particular to Clostridium acetobutylicum, and mycoplasmas. These results are in conflict with 16S rRNA-based phylogenies, which placed T.maritima as one of the deepest branches of the bacterial tree.

PubMed Disclaimer

Publication types

MeSH terms

Associated data