Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 1998 Nov 26;339(22):1578-84.
doi: 10.1056/NEJM199811263392202.

von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome

Affiliations
Free article
Multicenter Study

von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome

M Furlan et al. N Engl J Med. .
Free article

Abstract

Background: Thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome are severe microvascular disorders of platelet clumping with similar signs and symptoms. Unusually large multimers of von Willebrand factor, capable of agglutinating circulating platelets under high shear stress, occur in the two conditions. We investigated the prevalence of von Willebrand factor-cleaving protease deficiency in patients with familial and nonfamilial forms of these disorders.

Methods: Plasma samples were obtained from 53 patients with thrombotic thrombocytopenic purpura or hemolytic-uremic syndrome. Von Willebrand factor-cleaving protease was assayed in diluted plasma samples with purified normal von Willebrand factor as the substrate. The extent of the degradation of von Willebrand factor was assessed by electrophoresis in sodium dodecyl sulfate-agarose gels and immunoblotting. To determine whether an inhibitor of von Willebrand factor-cleaving protease was present, we measured the protease activity in normal plasma after incubation with plasma from the patients.

Results: We examined 30 patients with thrombotic thrombocytopenic purpura and 23 patients with the hemolytic-uremic syndrome. Of 24 patients with nonfamilial thrombotic thrombocytopenic purpura, 20 had severe and 4 had moderate protease deficiency during an acute event. An inhibitor found in 20 of these patients was shown to be IgG in five of five tested plasma samples. Of 13 patients with nonfamilial hemolytic-uremic syndrome, 11 had normal levels of activity of von Willebrand factor-cleaving protease during the acute episode, whereas in 2 patients, the activity was slightly decreased. All 6 patients with familial thrombotic thrombocytopenic purpura lacked von Willebrand factor-cleaving protease activity but had no inhibitor, whereas all 10 patients with familial hemolytic-uremic syndrome had normal protease activity. In vitro proteolytic degradation of von Willebrand factor by the protease was studied in 5 patients with familial and 7 patients with nonfamilial hemolytic-uremic syndrome and was normal in all 12 patients.

Conclusions: Nonfamilial thrombotic thrombocytopenic purpura is due to an inhibitor of von Willebrand factor-cleaving protease, whereas the familial form seems to be caused by a constitutional deficiency of the protease. Patients with the hemolyticuremic syndrome do not have a deficiency of von Willebrand factor-cleaving protease or a defect in von Willebrand factor that leads to its resistance to protease.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources