Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Oct 27;65(2-3):127-61.
doi: 10.1016/s0168-1656(98)00126-6.

Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects

Affiliations
Review

Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects

G Braunegg et al. J Biotechnol. .

Abstract

Polyhdroxyalkanoates (PHAs), stored as bacterial reserve materials for carbon and energy, are biodegradable substitutes to fossil fuel plastics that can be produced from renewable raw materials. PHAs can be produced under controlled conditions by biotechnological processes. By varying the producing strains, substrates and cosubstrates, a number of polyesters can be synthesized which differ in monomer composition. By this means, PHAs with tailored interesting physical features can be produced. All of them are completely degradable to carbon dioxide and water through natural microbiological mineralization. Consequently, neither their production nor their use or degradation have a negative ecological impact. After a historical review, possibilities for the synthesis of novel PHAs applying different micro-organisms are discussed, and pathways of PHA synthesis and degradation are shown in detail for important PHA producers. This is followed by a discussion of the physiological role of the accumulation product in different micro-organisms. Detection, analysis, and extraction methods of PHAs from microbial biomass are shown, in addition to methods for polyester characterization. Strategies for PHA production under discontinuous and continuous regimes are discussed in detail in addition to the use of different cheap carbon sources from the point of view of different PHA producing strains. An outlook on PHA production by transgenic plants closes the review.

PubMed Disclaimer

MeSH terms

LinkOut - more resources