Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Nov 30;83(11):1104-14.
doi: 10.1161/01.res.83.11.1104.

Ontogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events

Affiliations
Free article

Ontogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events

M Gollasch et al. Circ Res. .
Free article

Erratum in

  • Circ Res 1999 Jan 8-22;84(1):125

Abstract

Ca2+ release through ryanodine receptors (RyRs) in the sarcoplasmic reticulum is a key element of excitation-contraction coupling in muscle. In arterial smooth muscle, Ca2+ release through RyRs activates Ca2+-sensitive K+ (KCa) channels to oppose vasoconstriction. Local Ca2+ transients ("Ca2+ sparks"), apparently caused by opening of clustered RyRs, have been observed in smooth and striated muscle. We explored the fundamental issue of whether RyRs generate Ca2+ sparks to regulate arterial smooth muscle tone by examining the function of RyRs during ontogeny of arteries in the brain. In the present study, Ca2+ sparks were measured using the fluorescent Ca2+ indicator fluo-3 combined with laser scanning confocal microscopy. Diameter and arterial wall [Ca2+] measurements obtained from isolated pressurized arteries were also used in this study to provide functional insights. Neonatal arteries (<1 day postnatal), although still proliferative, have the molecular components for excitation-contraction coupling, including functional voltage-dependent Ca2+ channels, RyRs, and KCa channels and also constrict to elevations in intravascular pressure. Despite having functional RyRs, Ca2+ spark frequency in intact neonatal arteries was approximately 1/100 of adult arteries. In marked contrast to adult arteries, neonatal arteries did not respond to inhibitors of RyRs and KCa channels. These results support the hypothesis that RyRs organize during postnatal development to cause Ca2+ sparks, and RyRs must generate Ca2+ sparks to regulate the function of the intact tissue.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources