Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct;52(4):289-99.
doi: 10.1111/j.1399-3011.1998.tb01243.x.

The use of synthetic peptides in the design of a consensus sequence vaccine for Pseudomonas aeruginosa

Affiliations

The use of synthetic peptides in the design of a consensus sequence vaccine for Pseudomonas aeruginosa

P J Cachia et al. J Pept Res. 1998 Oct.

Abstract

Pseudomonas aeruginosa employs pili to mediate adherence to epithelial cell surfaces. Research has shown that the C-terminal region of the pilin monomer contains the epithelial cell binding domain, which is semiconserved in seven different strains of this bacterium. Antibodies to this region of the pilin molecule are also able to block and prevent the infection process. As there is a degree of sequence and structural homology in the C-terminal region and all strains examined have been shown to bind to the same cell surface receptor, we reasoned that it should be possible to produce a synthetic peptide consensus sequence which would provide cross-reactive antiserum from a single peptide immunogen inhibiting the adherence of the known strains of P. aeruginosa. In this article we examine the cross-reactivity of five rabbit polyclonal antisera. One has been raised against the cell-surface receptor binding domain of native PAK strain pilin (residues 128-144) while the others have been raised to analogues of this region. Analysis of the cross-reactivity of these antisera, using competitive ELISA assay, has shown that it is possible to manipulate the amino acid sequence of a peptide immunogen to generate antiserum, which exhibits enhanced cross-reactivity to various strains of P. aeruginosa. Furthermore, when this peptide is conjugated to tetanus toxoid and used to vaccinate mice it provided cross-reactive protection against heterologous challenge with PAO strain bacteria. The results of these experiments are analyzed, and the applicability of our hypothesis and the implications of this approach to the design of a strain-independent consensus vaccine for immunization against Pseudomonas aeruginosa are discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources