Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Dec 8;1436(1-2):19-33.
doi: 10.1016/s0005-2760(98)00122-2.

Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels

Affiliations
Review

Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels

C W Taylor. Biochim Biophys Acta. .

Abstract

The three subtypes of inositol trisphosphate (InsP3) receptor expressed in mammalian cells are each capable of forming intracellular Ca2+ channels that are regulated by both InsP3 and cytosolic Ca2+. The InsP3 receptors of many, though perhaps not all, tissues are biphasically regulated by cytosolic Ca2+: a rapid stimulation of the receptors by modest increases in Ca2+ concentration is followed by a slower inhibition at higher Ca2+ concentrations. Despite the widespread occurrence of this form of regulation and the belief that it is an important element of the mechanisms responsible for the complex Ca2+ signals evoked by physiological stimuli, the underlying mechanisms are not understood. Both accessory proteins and Ca2+-binding sites on InsP3 receptors themselves have been proposed to mediate the effects of cytosolic Ca2+ on InsP3 receptor function, but the evidence is equivocal. The effects of cytosolic Ca2+ on InsP3 binding and channel opening, and the possible means whereby the effects are mediated are discussed in this review.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources