The cell-cycle regulated transcription factor B-Myb is phosphorylated by cyclin A/Cdk2 at sites that enhance its transactivation properties
- PMID: 9840932
- DOI: 10.1038/sj.onc.1202503
The cell-cycle regulated transcription factor B-Myb is phosphorylated by cyclin A/Cdk2 at sites that enhance its transactivation properties
Abstract
Expression of the B-Myb transcription factor is upregulated during late G1 phase of the cell cycle by an E2F-dependent transcriptional mechanism. B-Myb is specifically phosphorylated during S phase, suggesting that a cyclin-dependent kinase (Cdk) regulates its activity. Consistent with this notion, the S phase-specific cyclin A/Cdk2 was found previously to enhance B-Myb transactivation activity in cotransfected cells. In this study we provide evidence that B-Myb is a direct physiological target for cyclin A/Cdk2. We demonstrate that B-Myb is an in vitro substrate for cyclin A/Cdk2, but not for cyclin D1/Cdk4 or cyclin E/Cdk2. By mutating candidate Cdk2 phosphorylation sites, we show that B-Myb is phosphorylated at Thr447, Thr490, Thr497 and Ser581 by cyclin A/Cdk2 in vitro and that these sites are also phosphorylated in cycling U-2 OS cells. Inhibition of endogenous Cdk2 by dominant negative Cdk2 attenuated phosphorylation of Thr447, Thr490 and Thr497, but had no effect upon Ser581 modification. B-Myb transactivation activity was significantly reduced in a mutant containing amino acid substitutions at all four identified cyclin A/Cdk2 sites and was constitutively low in Saos-2 cells where endogenous cyclin A/Cdk2 activity was unable to phosphorylate ectopically expressed B-Myb. These data indicate that phosphorylation by cyclin A/Cdk2 is directly involved in enhancing B-Myb transactivation activity and that levels of endogenous cyclin A/Cdk2 activity may contribute to cell line-specific B-Myb function.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
