Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep;54(3):1014-29.

Criteria for the validation of surrogate endpoints in randomized experiments

Affiliations
  • PMID: 9840970

Criteria for the validation of surrogate endpoints in randomized experiments

M Buyse et al. Biometrics. 1998 Sep.

Erratum in

  • Biometrics 2000 Mar;56(1):324

Abstract

The validation of surrogate endpoints has been studied by Prentice (1989, Statistics in Medicine 8, 431-440) and Freedman, Graubard, and Schatzkin (1992, Statistics in Medicine 11, 167-178). We extended their proposals in the cases where the surrogate and the final endpoints are both binary or normally distributed. Letting T and S be random variables that denote the true and surrogate endpoint, respectively, and Z be an indicator variable for treatment, Prentice's criteria are fulfilled if Z has a significant effect on T and on S, if S has a significant effect on T, and if Z has no effect on T given S. Freedman relaxed the latter criterion by estimating PE, the proportion of the effect of Z on T that is explained by S, and by requiring that the lower confidence limit of PE be larger than some proportion, say 0.5 or 0.75. This condition can only be verified if the treatment has a massively significant effect on the true endpoint, a rare situation. We argue that two other quantities must be considered in the validation of a surrogate endpoint: RE, the effect of Z on T relative to that of Z on S, and gamma Z, the association between S and T after adjustment for Z. A surrogate is said to be perfect at the individual level when there is a perfect association between the surrogate and the final endpoint after adjustment for treatment. A surrogate is said to be perfect at the population level if RE is 1. A perfect surrogate fulfills both conditions, in which case S and T are identical up to a deterministic transformation. Fieller's theorem is used for the estimation of PE, RE, and their respective confidence intervals. Logistic regression models and the global odds ratio model studied by Dale (1986, Biometrics, 42, 909-917) are used for binary endpoints. Linear models are employed for continuous endpoints. In order to be of practical value, the validation of surrogate endpoints is shown to require large numbers of observations.

PubMed Disclaimer

Comment in