Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;274(6):H1885-94.
doi: 10.1152/ajpheart.1998.274.6.H1885.

Microvascular permeability and number of tight junctions are modulated by cAMP

Affiliations

Microvascular permeability and number of tight junctions are modulated by cAMP

R H Adamson et al. Am J Physiol. 1998 Jun.

Erratum in

  • Am J Physiol 1998 Oct;275(4 Pt 2):followi

Abstract

We tested the hypothesis that increased endothelial cell adenosine 3',5'-cyclic monophosphate (cAMP) decreases microvascular permeability in vivo. The effects of cAMP-specific phosphodiesterase type IV inhibition and adenylate cyclase activation on microvascular hydraulic conductivity (Lp) were investigated in intact individual capillaries and postcapillary venules in mesentery of pithed frogs (Rana pipiens). Treatment with rolipram (10 microM) and forskolin (5 microM) for 25 min decreased Lp to 37% of control. Rolipram alone also significantly decreased Lp. Isoproterenol (10 microM) decreased Lp to 27% of control within 20 min. A subgroup of eight vessels treated with rolipram and forskolin, in which mean Lp fell to 25% of control, was examined with transmission electron microscopy. The mean number of tight junctions in the treated vessels was 2.2 per cleft (303 clefts), significantly higher than in a matched control group (192 clefts), which was 1.7 per cleft. The results indicate that microvascular Lp can be modulated by intracellular cAMP and that one of the structural end points of stimulated cAMP levels is an increase in the mean number of tight-junction strands between endothelial cells.

PubMed Disclaimer

Publication types

LinkOut - more resources