Transposons in filamentous fungi--facts and perspectives
- PMID: 9841641
- DOI: 10.1002/(SICI)1521-1878(199808)20:8<652::AID-BIES8>3.0.CO;2-K
Transposons in filamentous fungi--facts and perspectives
Abstract
Transposons are ubiquitous genetic elements discovered so far in all investigated prokaryotes and eukaryotes. In remarkable contrast to all other genes, transposable elements are able to move to new locations within their host genomes. Transposition of transposons into coding sequences and their initiation of chromosome rearrangements have tremendous impact on gene expression and genome evolution. While transposons have long been known in bacteria, plants, and animals, only in recent years has there been a significant increase in the number of transposable elements discovered in filamentous fungi. Like those of other eukaryotes, each fungal transposable element is either of class or of class II. While class I elements transpose by a RNA intermediate and employ reverse transcriptases, class II elements transpose directly at the DNA level. We present structural and functional features for such transposons that have been identified so far in filamentous fungi. Emphasis is given to specific advantages or unique features when fungal systems are used to study transposable elements, e.g., the evolutionary impact of transposons in coenocytic organisms and possible experimental approaches toward horizontal gene transfer. Finally, we focus on the potential of transposons for tagging and identifying fungal genes.
Similar articles
-
SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily.BMC Evol Biol. 2006 Nov 7;6:89. doi: 10.1186/1471-2148-6-89. BMC Evol Biol. 2006. PMID: 17090310 Free PMC article.
-
Development of impala-based transposon systems for gene tagging in filamentous fungi.Methods Mol Biol. 2010;638:41-54. doi: 10.1007/978-1-60761-611-5_4. Methods Mol Biol. 2010. PMID: 20238260
-
Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution.Curr Genet. 2002 Jul;41(4):189-98. doi: 10.1007/s00294-002-0306-y. Epub 2002 Jun 21. Curr Genet. 2002. PMID: 12172959 Review.
-
Transposons in biotechnologically relevant strains of Aspergillus niger and Penicillium chrysogenum.Fungal Genet Biol. 2007 Dec;44(12):1399-414. doi: 10.1016/j.fgb.2007.07.010. Epub 2007 Aug 10. Fungal Genet Biol. 2007. PMID: 17881255
-
Approaches to functional genomics in filamentous fungi.Cell Res. 2006 Jan;16(1):31-44. doi: 10.1038/sj.cr.7310006. Cell Res. 2006. PMID: 16467874 Review.
Cited by
-
Abr1, a transposon-like element in the genome of the cultivated mushroom Agaricus bisporus (Lange) Imbach.Appl Environ Microbiol. 1999 Aug;65(8):3347-53. doi: 10.1128/AEM.65.8.3347-3353.1999. Appl Environ Microbiol. 1999. PMID: 10427018 Free PMC article.
-
Genome Comparisons between Botrytis fabae and the Closely Related Gray Mold Fungus Botrytis cinerea Reveal Possible Explanations for Their Contrasting Host Ranges.J Fungi (Basel). 2024 Mar 14;10(3):216. doi: 10.3390/jof10030216. J Fungi (Basel). 2024. PMID: 38535224 Free PMC article.
-
Occan, a novel transposon in the Fot1 family, is ubiquitously found in several Magnaporthe grisea isolates.Curr Genet. 2003 Mar;42(6):322-31. doi: 10.1007/s00294-002-0365-0. Epub 2003 Feb 8. Curr Genet. 2003. PMID: 12612805
-
De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis.PLoS Genet. 2010 Apr 8;6(4):e1000891. doi: 10.1371/journal.pgen.1000891. PLoS Genet. 2010. PMID: 20386741 Free PMC article.
-
Scooter, a new active transposon in Schizophyllum commune, has disrupted two genes regulating signal transduction.Genetics. 2000 Dec;156(4):1585-94. doi: 10.1093/genetics/156.4.1585. Genetics. 2000. PMID: 11102359 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical