Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan:112 ( Pt 1):97-110.
doi: 10.1242/jcs.112.1.97.

Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis

Affiliations

Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis

K A Becker et al. J Cell Sci. 1999 Jan.

Abstract

The zebrafish egg provides a useful experimental system to study events of fertilization, including exocytosis. We show by differential interference contrast videomicroscopy that cortical granules are: (1) released nonsynchronously over the egg surface and (2) mobilized to the plasma membrane in two phases, depending upon vesicle size and location. Turbidometric assay measurements of the timing and extent of exocytosis revealed a steady release of small granules during the first 30 seconds of egg activation. This was followed by an explosive discharge of large granules, beginning at 30 seconds and continuing for 1-2 minutes. Stages of single granule exocytosis and subsequent remodeling of the egg surface were imaged by either real-time or time-lapse videomicroscopy as well as scanning electron microscopy. Cortical granule translocation and fusion with the plasma membrane were followed by the concurrent expansion of a fusion pore and release of granule contents. A dramatic rearrangement of the egg surface followed exocytosis. Cortical crypts (sites of evacuated granules) displayed a purse-string-like contraction, resulting in their gradual flattening and disappearance from the egg surface. We tested the hypothesis that subplasmalemmal filamentous (F-) actin acts as a physical barrier to secretion and is locally disassembled prior to granule release. Experimental results showed a reduction of rhodamine-phalloidin and antimyosin staining at putative sites of secretion, acceleration of the timing and extent of granule release in eggs pretreated with cytochalasin D, and dose-dependent inhibition of exocytosis in permeabilized eggs preincubated with phalloidin. An increase in assembled actin was detected by fluorometric assay during the period of exocytosis. Localization studies showed that F-actin and myosin-II codistributed with an inward-moving, membrane-delimited zone of cytoplasm that circumscribed cortical crypts during their transformation. Furthermore, cortical crypts displayed a distinct delay in transformation when incubated continuously with cytochalasin D following egg activation. We propose that closure of cortical crypts is driven by a contractile ring whose forces depend upon dynamic actin filaments and perhaps actomyosin interactions.

PubMed Disclaimer

Publication types

LinkOut - more resources