Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;73(1):850-4.
doi: 10.1128/JVI.73.1.850-854.1999.

Constrained evolution of human immunodeficiency virus type 1 protease during sequential therapy with two distinct protease inhibitors

Affiliations

Constrained evolution of human immunodeficiency virus type 1 protease during sequential therapy with two distinct protease inhibitors

A Dulioust et al. J Virol. 1999 Jan.

Abstract

Human immunodeficiency virus type 1 (HIV-1) variants that have developed protease (PR) inhibitor resistance most often display cross-resistance to several molecules within this class of antiretroviral agents. The clinical benefit of the switch to a second PR inhibitor in the presence of such resistant viruses may be questionable. We have examined the evolution of HIV-1 PR genotypes and phenotypes in individuals having failed sequential treatment with two distinct PR inhibitors: saquinavir (SQV) followed by indinavir (IDV). In viruses where typical SQV resistance mutations were detected before the change to IDV, the corresponding mutations were maintained under IDV, while few additional mutations emerged. In viruses where no SQV resistance mutations were detected before the switch to IDV, typical SQV resistance profiles emerged following the introduction of IDV. We conclude that following suboptimal exposure to a first PR inhibitor, the introduction of a second molecule of this class can lead to rapid selection of cross-resistant virus variants that may not be detectable by current genotyping methods at the time of the inhibitor switch. Viruses committed to resistance to the first inhibitor appear to bear the "imprint" of this initial selection and can further adapt to the selective pressure exerted by the second inhibitor following a pathway that preserves most of the initially selected mutations.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ashorn P, McQuade T J, Thaisrivongs S, Tomasselli A G, Tarpley W G, Moss B. An inhibitor of the protease blocks maturation of human and simian immunodeficiency viruses and spread of infection. Proc Natl Acad Sci USA. 1990;87:7472–7476. - PMC - PubMed
    1. Autran B, Carcelain G, Li T S, Blanc C, Mathez D, Tubiana R, Katlama C, Debre P, Leibowitch J. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science. 1997;277:112–116. - PubMed
    1. Borman A, Paulous S, Clavel F. Resistance of HIV-1 to protease inhibitors: selection of resistance mutations in the presence and in the absence of the drug. J Gen Virol. 1996;77:419–426. - PubMed
    1. Chou T C, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55. - PubMed
    1. Condra J H, Holder D J, Schleif W A, Blahy O M, Danovich R M, Gabryelski L J, Graham D J, Laird D, Quintero J C, Rhodes A, Robbins H L, Roth E, Shivaprakash M, Yang T, Chodakewitz J A, Deutsch P J, Leavitt R Y, Massari F E, Mellors J W, Squires K E, Steigbigel R T, Teppler H, Emini E A. Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor. J Virol. 1996;70:8270–8276. - PMC - PubMed

Publication types

MeSH terms