Overexpression of bcl-2 or bcl-XL fails to inhibit apoptosis mediated by a novel retinoid
- PMID: 9848102
Overexpression of bcl-2 or bcl-XL fails to inhibit apoptosis mediated by a novel retinoid
Abstract
Overexpression of bcl-2 or bcl-XL has been found to inhibit the induction of apoptosis in malignant cells by a large number of agents including a wide variety of chemotherapeutic drugs. CD437 ¿6-[3-(1-adamantyl)-4 hydroxyphenyl]-2-naphthalene carboxylic acid¿ is a novel retinoid that induces apoptosis in a number of malignant cells through a unique mechanism of action. The addition of 1 microM CD437 to HL-60/NEO cells resulted in capase 3 (CPP32) activation and poly(ADP-ribose) polymerase (PARP) cleavage in 3 h whereas in bcl-2- or bcl-XL-overexpressing HL-60 cells CD437 induced CPP32 activation and PARP cleavage in 6 h. Although 50 and 300 nM CD437 were required to induce PARP cleavage in HL-60/NEO and HL-60/bcl-2, HL-60/bcl-XL cells, respectively, maximal apoptosis in both cell lines was achieved utilizing 300 nM CD437. All three cell lines, however, share identical dose-response curves in terms of their growth inhibition, suggesting that CD437-mediated inhibition of growth and induction of apoptosis represent two distinct and separable processes. In addition, CD437 induces GI arrest as well as p21WAFI/CIPI mRNA expression in these cells despite the overexpression of bcl-2 or bcl-XL. CD437 induced mitochondrial instability as indicated by cytochrome c leakage into the cytoplasm in all three cell lines. CD437 also induced growth inhibition and apoptosis of an apoptosis-resistant variant of the HL-60 cell line (HCW-2), which switched expression from bcl-2 to bcl-XL. CD437-mediated apoptosis is not accompanied by downregulation of bcl-2 or bcl-XL or upregulation of bax. The reason for the inability of bcl-2 or bcl-XL overexpression to inhibit CD437-mediated apoptosis is unclear. The ability of CD437 to initiate apoptosis in a spectrum of malignant cells without interference from bcl-2 or bcl-XL overexpression suggests that CD437 may possess significant therapeutic potential in the treatment of malignancy.
Similar articles
-
Overexpression of Bcl-2 or Bcl-xL inhibits Ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelogenous leukemia HL-60 cells.Cancer Res. 1996 Oct 15;56(20):4743-8. Cancer Res. 1996. PMID: 8840993
-
Mechanisms of apoptosis induced by the synthetic retinoid CD437 in human non-small cell lung carcinoma cells.Oncogene. 1999 Apr 8;18(14):2357-65. doi: 10.1038/sj.onc.1202543. Oncogene. 1999. PMID: 10327056
-
"Loop" domain is necessary for taxol-induced mobility shift and phosphorylation of Bcl-2 as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome c and apoptosis.Cancer Res. 1998 Aug 1;58(15):3202-8. Cancer Res. 1998. PMID: 9699642
-
The Bcl-xL and Bax-alpha control points: modulation of apoptosis induced by cancer chemotherapy and relation to TPCK-sensitive protease and caspase activation.Biochem Cell Biol. 1997;75(4):301-14. Biochem Cell Biol. 1997. PMID: 9493953 Review.
-
Classical and novel retinoids: their targets in cancer therapy.Leukemia. 2002 Apr;16(4):463-72. doi: 10.1038/sj.leu.2402414. Leukemia. 2002. PMID: 11960323 Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials