Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec;9(12):2181-93.
doi: 10.1681/ASN.V9122181.

Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats

Affiliations

Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats

J H Earm et al. J Am Soc Nephrol. 1998 Dec.

Abstract

Hypercalcemia is frequently associated with a urinary concentrating defect and overt polyuria. The molecular mechanisms underlying this defect are poorly understood. Dysregulation of aquaporin-2 (AQP2), the predominant vasopressin-regulated water channel, is known to be associated with a range of congenital and acquired water balance disorders including nephrogenic diabetes insipidus and states of water retention. This study examines the effect of hypercalcemia on the expression of AQP2 in rat kidney. Rats were treated orally for 7 d with dihydrotachysterol, which produced significant hypercalcemia with a 15 +/- 2% increase in plasma calcium concentration. Immunoblotting and densitometry of membrane fractions revealed a significant decrease in AQP2 expression in kidney inner medulla of hypercalcemic rats to 45.7 +/- 6.8% (n = 11) of control levels (100 +/- 12%, n = 9). A similar reduction in AQP2 expression was seen in cortex (36.9 +/- 4.2% of control levels, n = 6). Urine production increased in parallel, from 11.3 +/- 1.4 to a maximum of 25.3 +/- 1.9 ml/d (P < 0.01), whereas urine osmolality decreased from 2007 +/- 186 mosmol/kg x H2O to 925 +/- 103 mosmol/kg x H2O (P < 0.01). Immunocytochemistry confirmed a decrease in total AQP2 labeling of collecting duct principal cells from kidneys of hypercalcemic rats, and reduced apical labeling. Immunoelectron microscopy demonstrated a significant reduction in AQP2 labeling of the apical plasma membrane, consistent with the development of polyuria. In summary, the results strongly suggest that AQP2 downregulation and reduced apical plasma membrane delivery of AQP2 play important roles in the development of polyuria in association with hypercalcemia.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources