Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec 1;33(4):550-7.

The slow step of folding of Staphylococcus aureus PC1 beta-lactamase involves the collapse of a surface loop rate limited by the trans to cis isomerization of a non-proline peptide bond

Affiliations
  • PMID: 9849938

The slow step of folding of Staphylococcus aureus PC1 beta-lactamase involves the collapse of a surface loop rate limited by the trans to cis isomerization of a non-proline peptide bond

K A Wheeler et al. Proteins. .

Abstract

We wished to test the hypothesis that the non proline cis to trans isomerization of the peptide bond at position 167 in the S. aureus beta-lactamase PC1 exerts a significant controlling effect on the folding pathway of this enzyme. The previous data presented in support of this hypothesis could not rule out the effect of factors unrelated to non-proline cis/trans isomerization. We have used the plasmid pET9d to direct soluble overproduction of the S. aureus beta-lactamase PC1 and a site-directed mutant (Ile 167 to Pro) in Escherichia coli. Following purification the proteins were subjected to a comparative analysis of the kinetics of unfolding and refolding using the techniques of near- and far-UV circular dichroism spectroscopy and fluorescence spectroscopy in conjunction with "double-jump" experiments. Results show that the fully-unfolded I167P mutant enzyme retains 20% of molecules in a fast-refolding form and that slower-refolding molecules fold faster than the recombinant wild-type enzyme. The final stage of folding involves folding of the omega-loop into a conformation essential for enzymatic activity. In support of the original hypothesis, the folding of this omega-loop is rate limited by the isomerization of the Glu 166-Ile 167 peptide bond.

PubMed Disclaimer

Publication types

LinkOut - more resources