Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Nov 13;361(1):17-26.
doi: 10.1016/s0014-2999(98)00702-x.

Downregulation of brain mineralocorticoid and glucocorticoid receptor by antisense oligodeoxynucleotide treatment fails to alter spatial navigation in rats

Affiliations

Downregulation of brain mineralocorticoid and glucocorticoid receptor by antisense oligodeoxynucleotide treatment fails to alter spatial navigation in rats

M Engelmann et al. Eur J Pharmacol. .

Abstract

Adult male Brown Norway rats were long-term intracerebroventricularly (i.c.v.) infused with antisense oligodeoxynucleotides (18-mer, double endcapped phosphorothioate protected) targeting either mineralocorticoid or glucocorticoid receptor mRNA, or received the respective mixed bases sequence or vehicle. Mineralocorticoid receptor-mixed bases and glucocorticoid receptor-mixed bases oligodeoxynucleotide infusion (1 microg/0.5 microl/h) over a time period of seven days did not alter hippocampal mineralocorticoid receptor and glucocorticoid receptor binding when compared to vehicle treatment. In contrast, i.c.v. administration of mineralocorticoid receptor, as well as glucocorticoid receptor-antisense over the same time period resulted in a significantly reduced binding of mineralocorticoid receptor and glucocorticoid receptor in the hippocampus [mineralocorticoid receptor-antisense group approx. 72% of mineralocorticoid receptor-mixed bases and vehicle groups (100%); glucocorticoid receptor antisense group approx. 77% of glucocorticoid receptor-mixed bases and vehicle]. The specificity of these antisense effects is indicated by the finding that rats treated with mineralocorticoid receptor-antisense did not show any changes in glucocorticoid receptor and vice versa. Animals treated according to this infusion protocol and tested in the Morris water maze for their spatial navigation abilities failed to show significant differences among the groups. These data indicate that a reduction of hippocampal mineralocorticoid receptor or glucocorticoid receptor binding capacity by 20-30% does not interfere with spatial navigation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources