Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;202(Pt 2):211-8.
doi: 10.1242/jeb.202.2.211.

The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells

Affiliations

The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells

S C Land et al. J Exp Biol. 1999 Jan.

Abstract

A self-referencing, polarographic, oxygen-selective microelectrode was developed for measuring oxygen fluxes from single cells. This technique is based on the translational movement of the microelectrode at a known frequency through an oxygen gradient, between known points. The differential current of the electrode was converted into a directional measurement of flux using the Fick equation. Operational characteristics of the technique were determined using artificial gradients. Calculated oxygen flux values matched theoretical values derived from static measurements. A test preparation, an isolated neuron, yielded an oxygen flux of 11.46+/-1.43 pmol cm-2 s-1 (mean +/- s.e.m.), a value in agreement with those available in the literature for single cells. Microinjection of metabolic substrates or a metabolic uncoupler increased oxygen flux, whereas microinjection of KCN decreased oxygen flux. In the filamentous alga Spirogyra greveilina, the probe could easily differentiate a 16.6% difference in oxygen flux with respect to the position of the spiral chloroplast (13.3+/-0.4 pmol cm-2 s-1 at the chloroplast and 11.4+/-0.4 pmol cm-2 s-1 between chloroplasts), despite the fact that these positions averaged only 10.6+/-1.8 microm apart (means +/- s.e.m.). A light response experiment showed real-time changes in measured oxygen flux correlated with changes in lighting. Taken together, these results show that the self-referencing oxygen microelectrode technique can be used to detect local oxygen fluxes with a high level of sensitivity and spatial resolution in real time. The oxygen fluxes detected reliably correlated with the metabolic state of the cell.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources