Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec 18;273(51):34145-50.
doi: 10.1074/jbc.273.51.34145.

Werner syndrome protein. II. Characterization of the integral 3' --> 5' DNA exonuclease

Affiliations
Free article

Werner syndrome protein. II. Characterization of the integral 3' --> 5' DNA exonuclease

A S Kamath-Loeb et al. J Biol Chem. .
Free article

Abstract

In addition to its DNA helicase activity, Werner syndrome protein (WRN) also possesses an exonuclease activity (Shen, J.-C., Gray, M. D., Kamath-Loeb, A. S., Fry, M., Oshima, J., and Loeb, L. A. (1998) J. Biol. Chem. 273, 34139-34144). Here we describe the properties of nearly homogeneous WRN exonuclease. WRN exonuclease hydrolyzes a recessed strand in a partial DNA duplex but does not significantly digest single-stranded DNA, blunt-ended duplex, or a protruding strand of a partial duplex. Although DNA is hydrolyzed in the absence of nucleoside triphosphates, nuclease activity is markedly stimulated by ATP, dATP, or CTP. WRN exonuclease digests DNA with a 3' --> 5' directionality to generate 5'-dNMP products, and DNA strands terminating with either a 3'-OH or 3'-PO4 group are hydrolyzed to similar extents. A recessed DNA strand with a single 3'-terminal mismatch is hydrolyzed more efficiently by WRN than one with a complementary nucleotide, but the enzyme fails to hydrolyze a DNA strand terminating with two mismatched bases. WRN exonuclease is distinguished from known mammalian DNA nucleases by its covalent association with a DNA helicase, preference for a recessed DNA strand, stimulation by ATP, ability to equally digest DNA with 3'-OH or 3'-PO4 termini, and its preferential digestion of DNA with a single 3'-terminal mismatch.

PubMed Disclaimer

Publication types

LinkOut - more resources