Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec 18;273(51):34454-62.
doi: 10.1074/jbc.273.51.34454.

The role of ubiquitin conjugation in glucose-induced proteolysis of Saccharomyces maltose permease

Affiliations
Free article

The role of ubiquitin conjugation in glucose-induced proteolysis of Saccharomyces maltose permease

I Medintz et al. J Biol Chem. .
Free article

Abstract

In Saccharomyces, the addition of glucose induces a rapid degradation of maltose permease that is dependent on endocytosis and vacuolar proteolysis (Medintz, I., Jiang, H., Han, E. K., Cui, W., and Michels, C. A. (1996) J. Bacteriol. 178, 2245-2254). Here we report on the role of ubiquitin conjugation in this process. Deletion of DOA4, which causes decreased levels of available ubiquitin, severely decreases the rate of glucose-induced proteolysis, and this is suppressed by the overproduction of ubiquitin. Overexpression of ubiquitin in an endocytosis-deficient end3-ts strain results in the glucose-stimulated accumulation of a larger molecular weight species of maltose permease, which we demonstrate is a ubiquitin-modified form of the protein by utilizing two ubiquitin alleles with different molecular weights. The size of this ubiquitinated species of maltose permease is consistent with monoubiquitination. A promoter mutation that reduces expression of RSP5/NPI1, a postulated ubiquitin-protein ligase, dramatically reduces the rate of glucose-induced proteolysis of maltose permease. The role of various ubiquitin-conjugating enzymes was investigated using strains carrying mutant alleles ubc1Delta ubc4Delta, ubc4Delta ubc5Delta, cdc34-ts2/ubc3, and ubc9-ts. Loss of these functions was not shown to effect glucose-induced proteolysis of maltose permease, but loss of Ubc1, -4, and -5 was found to inhibit maltose permease expression at the post-transcriptional level.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources