Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Dec;54(6):1832-42.
doi: 10.1046/j.1523-1755.1998.00196.x.

Architectural patterns in branching morphogenesis in the kidney

Affiliations
Free article
Review

Architectural patterns in branching morphogenesis in the kidney

Q al-Awqati et al. Kidney Int. 1998 Dec.
Free article

Abstract

During kidney development, several discrete steps generate its three-dimensional pattern including specific branch types, regional differential growth of stems, the specific axes of growth and temporal progression of the pattern. The ureteric bud undergoes three different types of branching. In the first, terminal bifid type, a lateral branch arises and immediately bifurcates to form two terminal branches whose tips induce the formation of nephrons. After 15 such divisions (in humans) of this specifically renal type of branching, several nephrons are induced whose connecting tubules fuse and elongate to form the arcades. Finally, the last generations undergo strictly lateral branching to form the cortical system. The stems of these branches elongate in a highly regulated pattern. The molecular basis of these processes is unknown and we briefly review their potential mediators. Differential growth in three different axes of the kidney (cortico-medullary, dorsoventral and rostro-caudal) generate the characteristic shape of the kidney. Rapid advances in molecular genetics highlight the need for development of specific assays for each of these discrete steps, a prerequisite for identification of the involved pathways. The identification of molecules that control branching (the ultimate determinant of the number of nephrons) has acquired new urgency with the recent suggestion that a reduced nephron number predisposes humans to hypertension and to progression of renal failure.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources