Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec 8;37(49):17299-308.
doi: 10.1021/bi980078g.

Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures

Affiliations

Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures

D Huster et al. Biochemistry. .

Abstract

We investigated lateral lipid organization in membranes with a lipid composition relevant to neural and retinal membranes [phosphatidylcholine (PC)/phosphatidylethanolamine (PE)/phosphatidylserine (PS)/cholesterol, 4/4/1/1, mol/mol/mol/mol]. The mixed-chain phospholipids contained saturated stearic acid (18:0) in the sn-1 position and the monounsaturated oleic acid (18:1) or polyunsaturated docosahexaenoic acid (22:6) in sn-2. Lateral lipid organization was evaluated by 2H NMR order parameter measurements on stearic acid of all individual types of phospholipids in the mixture and, through a novel approach, two-dimensional NOESY 1H NMR spectroscopy with magic angle spinning (MAS). The docosahexaenoic acid chain order was evaluated from 1H NMR chain signal MAS-sideband intensities. Averaged over all lipids, the cholesterol-induced increase in sn-1 chain order is 2-fold larger in monounsaturated than in polyunsaturated lipids, and the order of both saturated and polyunsaturated hydrocarbon chains increases. Addition of cholesterol increases lipid order in the sequence 18:0-18:1 PE > 18:0-18:1 PC > 18:0-18:1 PS for the monounsaturated and 18:0-22:6 PC >> 18:0-22:6 PE > 18:0-22:6 PS for polyunsaturated mixtures. The variation of order parameters between lipid species suggests that cholesterol induces the formation of lipid microdomains with a headgroup and chain unsaturation-dependent lipid composition. The preferential interaction between cholesterol and polyunsaturated 18:0-22:6 PC, followed by 18:0-22:6 PE and 18:0-22:6 PS, was confirmed by 1H MAS NOESY cross-relaxation rate differences. Furthermore, cholesterol preferentially associates with saturated chains in mixed-chain lipids reflected by higher saturated chain-to-cholesterol cross-relaxation rates. We propose that cholesterol forms PC-enriched microdomains in the polyunsaturated 18:0-22:6 PC/18:0-22:6 PE/18:0-22:6 PS/cholesterol membranes in which the saturated sn-1 chains are preferentially oriented toward the cholesterol molecules.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources