Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec 15;37(50):17571-8.
doi: 10.1021/bi9817414.

Suppression of microtubule dynamics by binding of cemadotin to tubulin: possible mechanism for its antitumor action

Affiliations

Suppression of microtubule dynamics by binding of cemadotin to tubulin: possible mechanism for its antitumor action

M A Jordan et al. Biochemistry. .

Abstract

Cemadotin (LU103793) (NSC D-669356) is a water-soluble synthetic analogue of dolastatin 15 that inhibits cell proliferation in vitro and the growth of human tumor xenografts. Cemadotin is in phase II clinical trials as a promising cancer chemotherapeutic agent. The drug blocks cells at mitosis. Its primary mode of action has been unclear but is believed to involve an action on microtubules. We have found that cemadotin binds to tubulin and strongly suppresses microtubule dynamics. Scatchard analysis of cemadotin binding to tubulin indicated that there are two affinity classes of cemadotin-binding sites with Kd values of 19.4 microM and 136 microM. Cemadotin did not inhibit the binding of vinblastine to tubulin, and, conversely, vinblastine did not inhibit the binding of cemadotin to tubulin. By quantitative video microscopy of individual microtubules, we found that cemadotin strongly suppressed dynamic instability of microtubules assembled to steady state using bovine brain tubulin devoid of microtubule-associated proteins. It reduced the rate and extent of growing and shortening, increased the rescue frequency, and increased the percentage of time the microtubules spent in an attenuated or paused state, neither growing nor shortening detectably. At the lowest effective cemadotin concentrations, dynamics were suppressed in the absence of significant microtubule depolymerization. The results suggest that cemadotin exerts its antitumor activity by suppressing spindle microtubule dynamics through a distinct molecular mechanism by binding at a novel site in tubulin.

PubMed Disclaimer

Publication types

LinkOut - more resources