Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Dec 15;161(12):6715-23.

Two families of GTPases dominate the complex cellular response to IFN-gamma

Affiliations
  • PMID: 9862701
Comparative Study

Two families of GTPases dominate the complex cellular response to IFN-gamma

U Boehm et al. J Immunol. .

Abstract

IFN-gamma induces a number of cellular programs functional in innate and adaptive resistance to infectious pathogens. It has recently become clear that the complete cellular response to IFN-gamma is extraordinarily complex, with >500 genes (i.e., approximately 0.5% of the genome) activated. We made suppression-subtractive hybridization differential libraries from IFN-gamma-stimulated primary mouse embryonic fibroblasts and from a mouse macrophage cell line, ANA-1, in each case with reference to unstimulated cells. Of approximately 250 clones sequenced at random from the two libraries, >35% were representatives of one or the other of two small unrelated families of GTPases, the 65-kDa and 47-kDa families. These families dominate the IFN-gamma-induced response in both cell types. We report here the full-length sequences of one new 65-kDa and two new 47-kDa family members. The 65-kDa family members are under transcriptional control of IRF-1, whereas the 47-kDa family members are inducible in embryonic fibroblasts from IRF-1(-/-) mice. Members of both GTPase families are strongly up-regulated in livers of wild-type mice infected with the pathogenic bacterium, Listeria monocytogenes, but not in IFN-gammaR(0/0) mice. These GTPases appear to be dedicated to the IFN-gamma response, since resting levels are negligible and since neither family shows any significant relationship to any other described family of GTPases. Understanding the role of these GTPases in IFN-gamma-mediated resistance against pathogens is the task for the future.

PubMed Disclaimer

Publication types

MeSH terms

Associated data