Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Dec 15;161(12):7047-53.

Temporal role of chemokines in a murine model of cockroach allergen-induced airway hyperreactivity and eosinophilia

Affiliations
  • PMID: 9862742
Comparative Study

Temporal role of chemokines in a murine model of cockroach allergen-induced airway hyperreactivity and eosinophilia

E M Campbell et al. J Immunol. .

Abstract

The increase in inner-city asthma among children appears to be due to allergic responses to several allergens. Recent studies have demonstrated that Ags derived from cockroaches are especially prominent in these settings and a significant health concern for the induction of asthma in children. In the present study, we have outlined the development of a murine model of cockroach allergen-induced airway disease and assessed specific mechanisms of the response, which resembles atopic human asthma. The allergic responses in this model include allergen-specific airway eosinophilia and significantly altered airway physiology, which directly correlates with inflammation. We have further utilized this allergen to establish primary and secondary rechallenge stages of late phase hyperreactivity exacerbation. This latter stage is characterized by greater changes in airway physiology than the primary stage, and it is likely due to the preexisting peribronchial inflammation present at the time of the second allergen rechallenge. We have identified specific roles for CC chemokines during these stages, with MIP-1alpha being an important eosinophil attractant during the primary stage and eotaxin during the secondary rechallenge stage. The development of these models allows the evaluation of mediators involved in both stages of cockroach allergen challenge, as well as the testing of specific therapeutic modalities.

PubMed Disclaimer

Publication types

MeSH terms