Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;288(1):316-25.

Levosimendan, a calcium sensitizer in cardiac muscle, induces relaxation in coronary smooth muscle through calcium desensitization

Affiliations
  • PMID: 9862786

Levosimendan, a calcium sensitizer in cardiac muscle, induces relaxation in coronary smooth muscle through calcium desensitization

P Bowman et al. J Pharmacol Exp Ther. 1999 Jan.

Abstract

Levosimendan is a pyridazinone-dinitrile derivative belonging to a new class of cardiac inotropic drugs, Ca++ sensitizers. Levosimendan is also a vasodilator both in vitro and in vivo, but its mechanism is not well understood. The cardiac target protein of levosimendan, troponin C, is a Ca++-binding EF-hand protein. This raises the possibility that levosimendan may also interact with smooth muscle EF-hand proteins, such as, calmodulin, the regulatory myosin light chains, or S100 proteins. We investigated the effects of levosimendan on [Ca++]i, and force in porcine coronary arteries, with receptor-mediated (U46619) or KCl stimulation. At high levels of stimulation, levosimendan decreased force without changing or increasing [Ca++]i, measured with the Ca++-sensitive fluorescent probe fura-2 in the intact artery. With lower levels of U46619, levosimendan (1 microM) lowered force by 70% and reduced [Ca++]i by 38%. The relationship between force and [Ca++]i for KCl stimulation are significantly rightward shifted, indicating Ca++ desensitization by levosimendan. In contrast, the phosphodiesterase III inhibitor, milrinone, does not shift the force-Ca++ relations but elicits relaxation via lowering [Ca++]i. There was little change in pHi, indicating that the Ca++ desensitization by levosimendan was not attributable to decreasing pHi. Levosimendan relaxes coronary arteries and lowers [Ca++]i by mechanisms different than milrinone. Our results indicate a lowering of [Ca++]i by levosimendan consistent with opening of potassium channels and a relaxation that is independent of [Ca++]i. Our evidence points to a novel mechanism that might involve the direct effect of levosimendan on the smooth muscle contractile or regulatory proteins themselves.

PubMed Disclaimer

MeSH terms