Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998;6(4):301-10.
doi: 10.3109/15419069809010789.

Physical, contractile and calcium handling properties of neonatal cardiac myocytes cultured on different matrices

Affiliations

Physical, contractile and calcium handling properties of neonatal cardiac myocytes cultured on different matrices

R J Bick et al. Cell Adhes Commun. 1998.

Abstract

Extracellular matrix components play a vital role in the determination of heart cell growth, development of spontaneous contractile activity and morphologic differentiation. In this work we studied the physical and contractile changes in neonatal rat cardiac myocytes over the first four days of growth on three different extracellular matrices. We compared commercial laminin and fibronectin, plus a fibroblast-derived extracellular matrix, which we have termed cardiogel. Myocytes cultured on cardiogel were characterized by greater cellular area and volume when compared to cells cultured on the other single-component matrices. Spontaneous contractile activity appeared first in the cells grown on cardiogel, sometimes as early as the first day post-plating, in contrast to day three in the cells cultured on laminin. Measurements of cardiac myocyte contractility i.e. percent shortening and time to peak contraction, were made on each of the first four days in each culture. Myocytes cultured on cardiogel developed maximum shortening more rapidly than the other cultures, and an earlier response to electrical pacing. Histochemical staining for myocyte mitochondrial content, revealed that the cardiogel-supported cells exhibited the earliest development of this organelle and, after four days, the greatest abundance. This reflects both a greater cell size, as well as response to increasing energy demands. Due to the increase in volume and contractile activity exhibited by the cardiogel grown myocytes, we employed calcium binding and uptake experiments to determine the comparative cellular capacities for calcium and as an indicator of sarcoplasmic reticulum development. Also whole cell phosphorylation in the presence of low detergent was assayed, to correlate calcium uptake with phosphorylation, in an attempt to examine possible increases in calcium pump number and other phosphorylatable proteins. In agreement with our physical and contractile data, we found that the cells grown on cardiogel showed a greater calcium uptake over the first four days of culture, and increased phosphorylation. However, calcium binding was not dramatically different comparing the three culture matrices. Based on our data, the fibroblast-derived cardiogel is the matrix of choice supporting earliest maturation of neonatal cardiomyocytes, in terms of spontaneous contractions, calcium handling efficiency, cell size and development of a subcellular organelle, the mitochondrion.

PubMed Disclaimer