Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec 15;58(24):5749-61.

Modeling of the time-dependency of in vitro drug cytotoxicity and resistance

Affiliations
  • PMID: 9865733

Modeling of the time-dependency of in vitro drug cytotoxicity and resistance

L M Levasseur et al. Cancer Res. .

Abstract

For potential clinical extrapolation of in vitro findings, it is of interest to relate the measured effect of an anticancer agent to concentration and exposure time. The Hill model (A. V. Hill, J. Physiol., 40: iv-vii, 1910) is commonly used to describe pharmacodynamic (PD) effects, including drug-induced growth inhibition of cancer cells in vitro. The IC(X)n x T = k relationship, in which IC(X) is the concentration of agent required to reduce cell growth by X%, T is the exposure time, and n and k are estimable parameters, was first applied to bacterial disinfectant action and then was successfully used to model anticancer drug potency as a function of exposure time (D. J. Adams, Cancer Res., 49: 6615-6620, 1989). Our goal was to create a new global PD modeling paradigm to facilitate the quantitative assessment of the growth-inhibitory effect of anticancer agents as a function of concentration and exposure time. Wild-type human ovarian A2780 and ileocecal HCT-8 carcinoma cells and sublines that were resistant to cisplatin (A2780/CP3), doxorubicin (A2780/DX5B), and raltitrexed (RTX) (HCT-8/DW2) were exposed to various anticancer agents, cisplatin, doxorubicin, paclitaxel, trimetrexate, RTX, methotrexate, and AG2034, for periods ranging from 1 to 96 h. Cell growth inhibition was measured with the sulforhodamine B protein dye assay. Patterns of time-dependency of drug potency, slope of the concentration-effect curves, and relative degree of resistance were characterized. Empirical mathematical expressions were built into a global concentration-time-effect model. The global PD model was then fit to the concentration-time-effect data with iteratively reweighted nonlinear regression. Under specific treatment conditions, the examination of the slope and the shape of the concentration-effect curves revealed a large heterogeneity in drug response, e.g., shallow concentration-effect curve or double or triple Hill "roller coaster" concentration-effect curve. These patterns, which were observed at intermediate exposure times in parental and resistant cells for paclitaxel and trimetrexate or only in resistant HCT-8/DW2 cells for RTX, methotrexate, and AG2034, revealed mechanistic insights for the former cases but possible methodological artifacts for the latter cases. The comprehensive PD modeling of the cytotoxic effect of anticancer agents showed that it was possible to modulate drug effect, response heterogeneity, and drug resistance by altering the time of exposure to the agents. This approach will be useful for: (a) describing complex concentration-time-effect surfaces; (b) refining biological interpretations of data; (c) providing insights on mechanisms of drug action and resistance; and (d) generating leads for clinical use of anticancer drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources