Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec 15;58(24):5787-94.

Host-mediated antibody-dependent cellular cytotoxicity contributes to the in vivo therapeutic efficacy of an anti-CD7-saporin immunotoxin in a severe combined immunodeficient mouse model of human T-cell acute lymphoblastic leukemia

Affiliations
  • PMID: 9865737

Host-mediated antibody-dependent cellular cytotoxicity contributes to the in vivo therapeutic efficacy of an anti-CD7-saporin immunotoxin in a severe combined immunodeficient mouse model of human T-cell acute lymphoblastic leukemia

D J Flavell et al. Cancer Res. .

Abstract

We have investigated the anti-leukemia effect that is exerted by the murine anti-CD7 antibody HB2 in a severe combined immunodeficient (SCID) mouse model of human T-cell acute lymphoblastic leukemia (T-ALL) and determined the contribution that this antibody effect makes to the therapeutic potency of a saporin immunotoxin (IT) constructed with the same antibody. The anti-leukemia effect is not exerted through complement-mediated lysis or through direct growth-inhibitory signaling after binding of antibody to the CD7 molecule on the T-ALL cell surface but rather through antibody-dependent cellular cytotoxicity (ADCC). Thus, the in vivo depletion of SCID mice of their natural killer cells almost completely abolishes the therapeutic effect of native HB2 anti-CD7 antibody and moreover significantly reduces the in vivo therapeutic performance of the anti-CD7 HB2-SAPORIN IT. Furthermore, an IT constructed with the F(ab')2 fragment of the same anti-CD7 antibody (HB2-F(ab')2-SAPORIN), which is incapable of recruiting natural killer cells, performed significantly less well therapeutically than HB2-SAPORIN IT. There was also a significant improvement in the therapeutic performance of the HB2-F(ab')2-SAPORIN IT in SCID-HSB-2 mice when used in combination with intact HB2 antibody, presumably through restoration of an ADCC attack on the target HSB-2 cell. These combined data indicate that ADCC in the SCID mouse does contribute additively together with toxin to the in vivo therapeutic potency of the HB2-SAPORIN IT directed against this human T-ALL cell line and that this has potentially important implications for the utility of this and other related classes of immunotherapeutic in human therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources