Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec;128(12):2334-40.
doi: 10.1093/jn/128.12.2334.

Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model

Affiliations

Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model

F Yang et al. J Nutr. 1998 Dec.

Abstract

Green tea polyphenols are potent antioxidants. They have both anti-cancer and anti-inflammatory effects. However, their mechanisms of actions remain unclear. In inflammation, tumor necrosis factor-alpha(TNFalpha) plays a pivotal role. NF-KB, an oxidative stress -sensitive nuclear transcription factor, controls the expression of many genes including the TNFalpha gene. We postulated that green tea polyphenols regulate TNFalpha gene expression by modulating NF-KB activation through their antioxidant properties. In the macrophage cell line, RAW264.7, (-)epigallocatechin gallate (EGCG), the major green tea polyphenol, decreased lipopolysaccharide (LPS)-induced TNFalpha production in a dose-dependent fashion (50% inhibition at 100 mmol/L). EGCG also inhibited LPS-induced TNFalpha mRNA expression and nuclear NF-KB-binding activity in RAW264.7 cells (30-40% inhibition at 100 mmol/L). Similarly, EGCG inhibited LPS-induced TNFalpha production in elicited mouse peritoneal macrophages. In male BALB/c mice, green tea polyphenols (given by oral gavage 2 h prior to an i.p. injection of 40 mg LPS/kg body wt) decreased LPS-induced TNFalpha production in serum in a dose-responsive fashion. At a dose of 0.5 g green tea polyphenols/kg body wt, serum TNFalpha was reduced by 80% of control. Moreover, 0.5 g green tea polyphenols/kg body wt completely inhibited LPS-induced lethality in male BALB/c mice. We conclude that the anti-inflammatory mechanism of green tea polyphenols is mediated at least in part through down-regulation of TNFalpha gene expression by blocking NF-KB activation. These findings suggest that green tea polyphenols may be effective therapy for a variety of inflammatory processes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources