Injury-induced expression of endothelial nitric oxide synthase by glial and microglial cells in the leech central nervous system within minutes after injury
- PMID: 9872006
- PMCID: PMC1689516
- DOI: 10.1098/rspb.1998.0555
Injury-induced expression of endothelial nitric oxide synthase by glial and microglial cells in the leech central nervous system within minutes after injury
Abstract
It is known that nitric oxide (NO) is produced by injured tissues of the mammalian central nervous system (CNS) within days of injury. The aim of the present experiments was to determine the cellular synthesis of NO in the CNS immediately after injury, using the CNS of the leech which is capable of synapse regeneration, as a step towards understanding the role of NO in nerve repair. We report that within minutes after crushing the nerve cord of the leech, the region of damage stained histochemically for NADPH diaphorase, which is indicative of nitric oxide synthase (NOS) activity, and was immunoreactive for endothelial NOS (eNOS). On immunoblots of leech CNS extract, the same antibody detected a band with a relative molecular mass of 140,000, which is approximately the size of vertebrate eNOS. Cells expressing eNOS immunoreactivity as a result of injury were identified after freezing nerve cords, a procedure that produced less tissue distortion than mechanical crushing. Immunoreactive cells included connective glia and some microglia. Calmodulin was necessary for the eNOS immunoreactivity: it was blocked by calmodulin antagonist W7 (25 microM), but not by similar concentrations of the less potent calmodulin antagonist W12. Thus in the leech CNS, in which axon and synapse regeneration is successful, an increase in NOS activity at lesions appears to be among the earliest responses to injury and may be important for repair of axons.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
