Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec;15(12):1005-13.
doi: 10.1089/neu.1998.15.1005.

Role of cyclooxygenase 2 in acute spinal cord injury

Affiliations

Role of cyclooxygenase 2 in acute spinal cord injury

D K Resnick et al. J Neurotrauma. 1998 Dec.

Abstract

Cyclooxygenase, or prostaglandin G/H synthase, is the rate-limiting step in the production of prostaglandins. A new isoform, cyclooxygenase-2 (COX-2), has been cloned that is induced during inflammation in leukocytes and by synaptic activity in neurons. The objectives of this study are to determine the nature of COX-2 expression in normal and traumatized rat spinal cord, and to determine the effects of selective COX-2 inhibition on functional recovery following spinal cord injury. Using a weight-drop model of spinal cord injury, COX-2 mRNA expression was studied with in situ hybridization. COX-2 protein expression was examined by immunohistochemistry and Western analysis. Finally, using the highly selective COX-2 inhibitor, 1-[(4-methylsufonyl)phenyl]-3-tri-fluro-methyl-5-[(4-flur o)phenyl]prazole (SC58125), the effect of COX-2 inhibition on functional outcome following a spinal cord injury was determined. COX-2 was expressed in the normal adult rat spinal cord. COX-2 mRNA and protein production were increased following injury with increases in COX-2 mRNA production detectable at 2 h following injury. Increased levels of COX-2 protein were detectable for at least 48 h following traumatic spinal cord injury. Selective inhibition of COX-2 activity with SC58125 resulted in improved mean Basso, Beattie, and Bresnahan scores in animals with 12.5- and 25-g/cm spinal cord injuries; however, the effect was significant only for the 12.5g/cm injury group (p=0.0001 vs. p=0.0643 in the 25-g/cm group). These data demonstrate that COX-2 mRNA and protein expression are induced by spinal cord injury, and that selective inhibition of COX-2 improves functional outcome following experimental spinal cord injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources