Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Jan 1:4:D1-8.
doi: 10.2741/culebras.

Aminoglycoside resistance mediated by the bifunctional enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase

Affiliations
Review

Aminoglycoside resistance mediated by the bifunctional enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase

E Culebras et al. Front Biosci. .

Abstract

The expression of the bifunctional aminoglycoside inactivating enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase is the most important mechanism of high-level aminoglycoside resistance in Staphylococcus and Enterococcus. The enzyme is unique because it presents two different aminoglycoside-modifying activities located in different regions of the molecule. The gene aac(6')-aph(2") which encodes the synthesis of the enzyme is present in Tn4100-like transposons which are inserted both in R plasmids and the chromosomes of aminoglycoside-resistant isolates. The genetic structure of aac(6')-aph(2")-containing isolates indicates that their origin is not clonal, but plasmid conjugation together with multiple insertion events are in the basis of the rapid spread of aminoglycoside resistance among Gram-positive bacteria. There is not any prevalent genetic linkage of aac(6')-aph(2") with other antibiotic-resistance determinant. However, most methicillin resistant Staphylococcus strains present also high-level aminoglycoside resistance as the consequence of constant antibiotic pressure. This situation could change in the next future with the reported reemergence of gentamicin-susceptible MRSA isolates. Recent data show that inhibitors of eukaryotic protein kinases inhibit as well the aminoglycoside phosphotransferase activity. This effect indicates a common structure for these two families of proteins and opens the possibility for a meaningful survey of inhibitors of 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase useful in clinical practice.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources