Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan 8;274(2):896-902.
doi: 10.1074/jbc.274.2.896.

Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents

Affiliations
Free article

Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents

T Friedrich et al. J Biol Chem. .
Free article

Abstract

ClC-4 and ClC-5, together with ClC-3, form a distinct branch of the CLC chloride channel family. Although ClC-5 was shown to be mainly expressed in endocytotic vesicles, expression of ClC-5 in Xenopus oocytes elicited chloride currents. We now show that ClC-4 also gives rise to strongly outwardly rectifying anion currents when expressed in oocytes. They closely resemble ClC-5 currents with which they share a NO3- > Cl- > Br- > I- conductance sequence that differs from that reported for the highly homologous ClC-3. Both ClC-4 and ClC-5 currents are reduced by lowering extracellular pH. We could measure similar currents after expressing either channel in HEK293 cells. To demonstrate that these currents are directly mediated by the channel proteins, we introduced several point mutations that change channel characteristics. In ClC-5, several point mutations alter the kinetics of activation but leave macroscopic rectification and ion selectivity unchanged. A mutation (N565K) equivalent to a mutation reported to have profound effects on ClC-3 does not have similar effects on ClC-5. Moreover, a mutation at the end of D2 (S168T in ClC-5) changes ion selectivity, and a mutation at the end of D3 (E211A in ClC-5 and E224A in ClC-4) changes voltage dependence and ion selectivity. This shows that ClC-4 and ClC-5 can directly mediate plasma membrane currents.

PubMed Disclaimer

Publication types

LinkOut - more resources