Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec;10(12):3908-12.
doi: 10.1046/j.1460-9568.1998.00441.x.

Functional expression of GFP-tagged Kv1.3 and Kv1.4 channels in HEK 293 cells

Affiliations

Functional expression of GFP-tagged Kv1.3 and Kv1.4 channels in HEK 293 cells

J Kupper. Eur J Neurosci. 1998 Dec.

Abstract

Various types of voltage gated potassium channels (Kv) are responsible for setting the resting potential and shaping the membrane potential waveform in the subcellular domains of neurons. In order to visualize the expression behaviour of recombinant Kv channels, we have fused green fluorescent protein (GFP) to the N-terminal of the alpha subunits Kv1.3 and Kv1.4. In transiently transfected HEK 293 cells the GFP-Kv chimeras localize to the plasma membrane. Whole-cell voltage clamp recordings demonstrate that they form functional potassium channels. Kinetic analysis reveals that the gating kinetics of GFP-Kv1.3 are virtually indistinguishable from those displayed by its wild-type correlate. For GFP-Kv1.4 channels we find that their gating is modified in an expected manner. In response to short depolarizing voltage pulses they do not inactivate, indicating that the attached GFP interferes with the fast N-type inactivation mechanism present in wild type Kv1.4 channels. We suggest that GFP tagging of Kv channels might be a useful tool to monitor the spatiotemporal distribution of recombinant potassium channels expressed in living neurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources