Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Dec;253(6):176-85.
doi: 10.1002/(SICI)1097-0185(199812)253:6<176::AID-AR6>3.0.CO;2-W.

Exploring brain circuitry with neurotropic viruses: new horizons in neuroanatomy

Affiliations
Free article
Review

Exploring brain circuitry with neurotropic viruses: new horizons in neuroanatomy

J P Card. Anat Rec. 1998 Dec.
Free article

Abstract

There have been substantial advances in methods for defining connections among neurons over the past quarter century. However, most tracers have been limited in their ability to define populations of functionally related neurons that contribute to a multisynaptic circuit because they are not transported across synapses. As a result, the large body of literature that has employed these tracers has established regional associations between regions that must be further explored with electron microscopy and electrophysiological methods to define the synaptic relations among constituent neurons. Recently, neurotropic alpha herpesviruses have been used to visualize ensembles of neurons that contribute to polysynaptic networks. These pathogens invade permissive cells, replicate, and pass transynaptically to infect other neurons. In effect, the viruses become self-amplifying tracers whose natural tropism and invasiveness define populations of functionally related neurons. The recent increase in the use of this experimental approach has emerged from advances in our understanding of the life cycle of these viruses and the resulting evidence in support of specific transynaptic passage of progeny virus rather than infection by lytic release into the extracellular space. This article reviews the advances that have made this a viable experimental approach and considers ways in which this method has been creatively used to illuminate aspects of nervous system circuit organization that could not be defined with conventional tracers.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources