Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Nov;11(11):1041-50.
doi: 10.1093/protein/11.11.1041.

Structure-function analysis of a conserved aromatic cluster in the N-terminal domain of human epidermal growth factor

Affiliations

Structure-function analysis of a conserved aromatic cluster in the N-terminal domain of human epidermal growth factor

M B Murray et al. Protein Eng. 1998 Nov.

Abstract

The importance of a cluster of conserved aromatic residues of human epidermal growth factor (hEGF) to the receptor binding epitope is suggested by the interaction of His10 and Tyr13 of the A-loop with Tyr22 and Tyr29 of the N-terminal beta-sheet to form a hydrophobic surface on the hEGF protein. Indeed, Tyr13 has previously been shown to contribute a hydrophobic determinant to receptor binding. The roles of His10, Tyr22 and Tyr29 were investigated by structure-function analysis of hEGF mutant analogues containing individual replacements of each residue. Substitutions with aromatic residues or a leucine at position 10 retained receptor affinities and agonist activities similar to wild-type indicating that an aromatic residue is not essential. Variants with polar, charged or aliphatic substitutions altered in size and/or hydrophobicity exhibited reduced binding and agonist activities. 1-Dimensional 1H NMR spectra of high, moderate and low-affinity analogues at position 10 suggested only minor alterations in hEGF native structure. In contrast, a variety of replacements were tolerated at position 22 or 29 indicating that neither aromaticity nor hydrophobicity of Tyr22 and Tyr29 is required for receptor binding. CD spectra of mutant analogues at position 22 or 29 indicated a correlation between loss of receptor affinity and alterations in hEGF structure. The results indicate that similar to Tyr13, His10 of hEGF contributes hydrophobicity to the receptor binding epitope, whereas Tyr22 and Tyr29 do not appear to be directly involved in receptor interactions. The latter conclusion, together with previous studies, suggests that hydrophobic residues on only one face of the N-terminal beta-sheet of hEGF are important in receptor recognition.

PubMed Disclaimer

Similar articles

Publication types