A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury
- PMID: 9879098
- DOI: 10.1097/00007632-199812150-00012
A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury
Abstract
Cervical spondylotic myelopathy (CSM) is the most common cause of spinal cord dysfunction. Despite advances in diagnosis and surgical treatment, many patients still have severe permanent neurologic deficits caused by this condition. An improved understanding of the pathophysiology of cervical spondylotic myelopathy, particularly at a cellular and molecular level, may allow improved treatments in the future. A detailed review of articles in the literature pertaining to cervical spondylotic myelopathy was supplemented by an analysis of relevant mechanisms of spinal cord injury. The pathologic course of cervical spondylotic myelopathy is characterized by early involvement of the corticospinal tracts and later destruction of anterior horn cells, demyelination of lateral and dorsolateral tracts, and relative preservation of anterior columns. Static and mechanical factors and ischemia are critical to the development of cervical spondylotic myelopathy. Free radical-and cation-mediated cell injury, glutamatergic toxicity, and apoptosis may be of relevance to the pathophysiology of cervical spondylotic myelopathy. To date, research in cervical spondylotic myelopathy has focused exclusively on the role of mechanical factors and ischemia. Fundamental research at a cellular and molecular level, particularly in the areas of glutamatergic toxicity and apoptosis may result in clinically relevant treatments for this condition.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
